

Orbital Debris and Future Environment Remediation

J.-C. Liou, PhD
NASA Orbital Debris Program Office
Johnson Space Center, Houston, Texas

OCT Technical Seminar
NASA HQ, Washington, DC, 21 July 2011

Outline

- An overview of the historical and current orbital debris environment
- Projected growth of the future debris population
- The need for active debris removal (ADR)
- A grand challenge for the 21st century
- The forward path

An Overview of the Orbital Debris Environment

The Near-Earth Environment (1957-2010)

- Only objects in the US Space Surveillance Network (SSN) catalog are shown
- · Sizes of the dots are not to scale

What Is Orbital Debris?

 Orbital debris is any man-made object in orbit about the Earth that no longer serves a useful purpose

Examples

- Intacts: Spent rocket bodies (R/Bs, i.e., upper stages) and retired spacecraft (S/C, i.e., payloads)
- Breakup fragments (via explosions or collisions)
- Mission-related debris: objects released during normal mission operations (engine covers, yo-yo despin weights, etc.)
- Solid rocket motor effluents (Al₂O₃ slag and dust particles)
- NaK droplets (coolant leaked from Russian nuclear reactors)
- Surface degradation debris (paint flakes, etc.)

The Orbital Debris Family

How Much Junk Is Currently Up There?

Softball size or larger (10 cm): ~22,000 (tracked by the Space Surveillance Network)

Marble size or larger (1 cm): ~500,000

- Total mass: ~6300 tons LEO-to-GEO (~2700 tons in LEO)
- Debris as small as 0.2 mm pose a realistic threat to Human Space Flight (EVA suit penetration, Shuttle window replacement)

The Environment

An Example – Shuttle Vulnerabilities

Potential Shuttle Damage

Window Replacement

EVA Suit Penetration

Radiator Penetration

- Shuttle Loss of Crew and Vehicle (LOCV) risks from MMOD impact damage are in the range of 1 in 250 to 1 in 300 per mission
 - The risks vary with altitude, mission duration, and attitude
 - OD to MM is about 2:1 at ISS altitude

Growth of the Historical Catalog Populations

Mass in Orbit

Sources of the Catalog Population – All

Number Breakdown

Mass Breakdown

CIS = Former Soviet Republics

Sources of the Catalog Population – LEO Only

Number Breakdown

Mass Breakdown

CIS = Former Soviet Republics

Spatial Density of the Catalog Population (1/2)

Spatial Density of the Catalog Population (2/2)

Mass Distribution in LEO

Projected Growth of the Future Debris Environment

(Worst case, best case, and "realistic" scenarios)

Debris Environment Modeling

- All environment simulations are based on LEGEND (an <u>LEO-to-GEO En</u>vironment <u>Debris model</u>)
 - LEGEND is the high fidelity orbital debris evolutionary model developed by the NASA Orbital Debris Program Office
 - LEGEND simulates objects individually, incorporates major perturbations in orbit propagation, and includes major source and sink mechanisms (launches, breakups, decays)
 - Ten peer-reviewed journal papers have been published on LEGEND and its applications since 2004
 - This seminar will focus on 10 cm objects and limit the future projection to 200 years

Peer-Reviewed Journal Publications (LEGEND and LEGEND Applications)

- 1. Liou, J.-C. et al., LEGEND A three-dimensional LEO-to-GEO debris evolutionary model. Adv. Space Res. 34, 5, 981-986, 2004.
- 2. Liou, J.-C. and Johnson, N.L., A LEO satellite postmission disposal study using LEGEND, *Acta Astronautica* 57, 324-329, 2005.
- 3. Liou, J.-C., Collision activities in the future orbital debris environment, *Adv. Space Res.* 38, 9, 2102-2106, 2006.
- 4. Liou, J.-C. and Johnson, N.L., Risks in space from orbiting debris, *Science* 311, 340-341, 2006.
- 5. Liou, J.-C., A statistic analysis of the future debris environment, *Acta Astronautica* 62, 264-271, 2008.
- 6. Liou, J.-C. and Johnson, N.L., Instability of the present LEO satellite population, *Adv. Space Res.* 41, 1046-1053, 2008.
- 7. Liou, J.-C. and Johnson, N.L., Characterization of the cataloged Fengyun-1C fragments and their long-term effect on the LEO environment, *Adv. Space Res.* 43, 1407-1415, 2009.
- 8. Liou, J.-C. and Johnson, N.L., A sensitivity study of the effectiveness of active debris removal in LEO, *Acta Astronautica* 64, 236-243, 2009.
- 9. Liou, J.-C. et al., Controlling the growth of future LEO debris populations with active debris removal, *Acta Astronautica* 66, 648-653, 2010.
- 10. Liou, J.-C., An active debris removal parametric study for LEO environment remediation, *Adv. Space Res.* 47, 1865-1876, 2011.

Future Projection – The Worst Case Scenario (Regular Satellite Launches, but No Mitigation Measures)

Assessments of the Non-Mitigation Projection

- LEO: the non-mitigation scenario predicts the debris population (≥10 cm objects) will have a rapid non-linear increase in the next 200 years
 - This is a well-known trend (the "Kessler Syndrome") that was the motivation for developing the currently-adopted mitigation measures (e.g., the 25-yr rule) in the last 15 years
- MEO and GEO: the non-mitigation scenario predicts a moderate population growth
 - Only a few accidental collisions between 10 cm objects are predicted in the next 200 years
 - The currently-adopted mitigation measures (including EOL maneuvers in GEO) will <u>further</u> limit the population growth
 - Environment remediation is not urgent in MEO and GEO

Will the Commonly-Adopted Mitigation* Measures Stabilize the Future LEO Environment?

*Mitigation = Limit the generation of <u>new</u>/long-lived debris (NPR 8715.6A, NASA-STD-8719.14, USG OD Mitigation Standard Practices, UN Debris Mitigation Guidelines, etc.)

Future Projection – The Best Case Scenario

(No New Launches Beyond 1/1/2006)

- Collision fragments replace other decaying debris through the next 50 years, keeping the total population approximately constant
- Beyond 2055, the rate of decaying debris decreases, leading to a net increase in the overall satellite population due to collisions

Assessments of the No-New-Launches Scenario

- In reality, the situation will be worse than the "no new launches" scenario as
 - Satellites launches will continue
 - Major breakups may continue to occur (e.g., Fengyun-1C)
- Postmission disposal (such as a 25-year decay rule) will help, but will be insufficient to prevent the selfgenerating phenomenon from happening
- To preserve the near-Earth space for future generations, ADR must be considered

Conclusions of the 2006 Paper

- "The current debris population in the LEO region has reached the point where the environment is unstable and collisions will become the most dominant debrisgenerating mechanism in the future."
- "Only remediation of the near-Earth environment the removal of existing large objects from orbit – can prevent future problems for research in and commercialization of space."

- Liou and Johnson, *Science*, 20 January 2006

Environment Projection With Mitigation Measures

International Consensus

- The LEO environment instability issue is under investigation by the Inter-Agency Space Debris Coordination Committee (IADC) members
- An official "Stability of the Future LEO Environment" comparison study, was initiated in 2009
 - Six participating members: NASA (lead), ASI, ESA, ISRO, JAXA, and UKSA
 - Results from the six different models are consistent with one another, i.e., even with a good implementation of the commonlyadopted mitigation measures, the LEO debris population is expected to increase in the next 200 years
 - Study summary was presented at the April 2011 IADC meeting

Preserving the Environment with Active Debris Removal (ADR*)

*ADR = Removing debris beyond guidelines of current mitigation measures

Key Questions for ADR

- Where is the most critical region for ADR?
- What are the mission objectives?
- What objects should be removed first?
 - The debris environment is very dynamic. Breakups of large intacts generate small debris, small debris decay over time,...
- What are the benefits to the environment?
- How to do it?
- The answers will drive the top-level requirements, the necessary technology development, and the implementation of ADR operations

How to Define Mission Success?

Mission objectives guide the removal target selection criteria and the execution of ADR

Common objectives

- Follow practical/mission constraints (in altitude, inclination, class, size, etc.)
- Maximize benefit-to-cost ratio

Specific objectives

- Control population growth (small & large debris)
- Limit collision activities
- Mitigate mission-ending risks (not necessarily catastrophic destruction) to operational payloads
- Mitigate risks to human space activities
- And so on

Target large & massive intacts

Target small debris

Target Small Debris

One Example: Risks From Small Debris

- The U.S. segments of the ISS are protected against orbital debris about 1.4 cm and smaller
 - "Currently," the number of objects between 1.5 cm and 10 cm,
 with orbits crossing that of the ISS, is approximately 1200
 - ~800 of them are between 1.5 cm and 3 cm
 - To reduce 50% of the ISS-crossing orbital debris in this size range (1.5 cm to 3 cm) will require, for example, a debris collector/remover with an area-time product of ~1000 km² year

Small Debris Environment Is Highly Dynamic 4

Target Large Debris

Targeting the Root Cause of the Problem

- A 2008-2009 NASA study shows that the two key elements to <u>stabilize the future LEO environment</u> (in the next 200 years) are
 - A good implementation of the commonly-adopted mitigation measures (passivation, 25-year rule, avoid intentional destruction, etc.)
 - An active debris removal of <u>about five objects per year</u>
 - These are objects with the highest [$M \times P_{coll}$]
 - Many (but not all) of the potential targets in the current environment are spent Russian SL upper stages
 - Masses: 1.4 to 8.9 tons
 - Dimensions: 2 to 4 m in diameter, 6 to 12 m in length
 - Altitudes: ~600 to ~1000 km regions
 - Inclinations: ~7 well-defined bands

Controlling Debris Growth with ADR

Projected Collision Activities in LEO

Potential Active Debris Removal Targets

Active Debris Removal – A Grand Engineering Challenge for the Twenty-First Century

National Space Policy of the United States of America (28 June 2010)

- Orbital debris is mentioned on 4 different pages for a total of 10 times in this 14-page policy document
- On page 7:

Preserving the Space Environment and the Responsible Use of Space

Preserve the Space Environment. For the purposes of minimizing debris and preserving the space environment for the responsible, peaceful, and safe use of all users, the United States shall:

- ...
- Pursue research and development of technologies and techniques, through the Administrator of the National Aeronautics and Space Administration (NASA) and the Secretary of Defense, to mitigate and remove on-orbit debris, reduce hazards, and increase understanding of the current and future debris environment; and

•

Challenges for ADR Operations

Operations	Technology Challenges
Launch	Single-object removal per launch is not feasible from cost perspective
Propulsion	Solid, liquid, tether, plasma, laser, drag-enhancement devices, others?
Precision Tracking	Ground or space-based
GN&C and Rendezvous	Autonomous, non-cooperative targets
Stabilization (of the tumbling targets)	Physical or non-physical, how
Capture or Attachment	Physical (where, how) or non-physical (how), do no harm
Deorbit or Graveyard Orbit	When, where reentry ground risks

Other requirements:

- Affordable cost
- Repeatability of the removal system (in space)
- Target R/Bs first

The First Step

Identify top-level requirements for an <u>end-to-end</u> ADR operation

- Launch, propulsion, precision tracking, GN&C, rendezvous,
 stabilization, capture/attachment, and deorbit/graveyard maneuvers
- Define stakeholders and their expectations to drive the development of a concept of operations

Conduct mission design analyses and establish a feasible forward plan

- Identify TRLs of existing technologies
- Evaluate pros and cons of different technologies (e.g., space tug vs. drag-enhancement devices)
- Identify technology gaps (e.g., ways to stabilize a massive, non-cooperative, fast spinning/tumbling target)
- Perform trade studies (e.g., physical vs. non-physical capture; deorbit vs. graveyard orbit)

An Example – Deorbit With Drag-Enhancement Devices

Recent ADR Activities at the National and International Levels

NASA-DARPA International Conference on Orbital Debris Removal (Dec. 2009)

- The 2.5-day conference included 10 sessions
 - Understanding the Problem; Solution Framework; Legal & Economic;
 Operational Concepts; Using Environmental Forces; Capturing
 Objects; Orbital Transfer; Technical Requirements; In Situ vs. Remote Solutions; Laser Systems
 - Had 275 participants from 10 countries; 52 presentations plus 4 keynote speeches

The conference reflected a growing concern for the

future debris environment

It represented the first joint effort for different communities to explore the issues and challenges of active debris removal

Other Major ADR Events (1/2)

- International Science and Technology Center (ISTC)
 Space Debris Mitigation Workshop
 - A two-day workshop in Moscow in April 2010
 - An international group of experts (IGOE) panel was formed to develop plans for ISTC's participation in future ADR activities
 - ISTC provides a good potential mechanism for Russian contributions
- 1St European Workshop on Active Debris Removal
 - A one-day event hosted by CNES in Paris in June 2010
 - Included more than 100 participants
 - Solidified CNES' plan to move forward with an ADR demonstration mission
- ADR sessions at AIAA, COSPAR, EUCASS, IAC, etc.

Other Major ADR Events (2/2)

International Academy of Astronautics

 Is conducting a study to survey existing ADR technologies (led by ESA and NASA)

Inter-Agency Space Debris Coordination Committee

- Has just completed a LEO environment instability study (led by NASA)
- Is drafting a white paper on the future LEO debris environment and the need for ADR

Summary

Concluding Remarks (1/4)

- The LEO debris population will continue to increase even with a good implementation of the commonlyadopted mitigation measures
 - The increase is driven by catastrophic collisions involving large and massive intacts
 - The major mission-ending risks for most operational satellites, however, comes from impacts with debris just above the threshold of the protection shields (~5 mm to 1 cm)

Concluding Remarks (2/4)

Concluding Remarks (3/4)

- To address the root cause of the population growth (for large <u>and</u> small debris)
 - Target objects with the highest [M × P_{coll}]
 - To maintain the future LEO debris population at a level similar to the current environment requires an ADR of ~5 massive intacts per year
- To address the main threat to operational satellites
 - Target objects in the 5-mm-to-1-cm regime
 - The small debris environment is highly dynamic and will require a long-term operation to achieve the objective
- Targeting anything in between will NOT be the most effective means to remediate the environment nor to mitigate risks to operational satellites

Concluding Remarks (4/4)

- There is a need for a top-level, long-term strategic plan for environment remediation
 - Define "what is acceptable"
 - Define the mission objectives
 - Establish a roadmap/timeframe to move forward
- The community must commit the necessary resources to support the development of low-cost and viable removal technologies
 - Encourage dual-use technologies
- Address non-technical issues, such as policy, coordination, ownership, legal, and liability at the national and international levels

Preserving the Environment for Future Generations

- Four Essential "Cs" for ADR
 - Consensus
 - Cooperation
 - Collaboration
 - Contributions

Backup Charts

Why Should Satellite Owners/Operators Care?

- JSpOC is providing conjunction assessments for all operational satellites, <u>but</u>
- The major risk for operational satellites actually comes from impacts with small debris
- As the debris population increases
 - More frequent conjunction assessments will be needed
 - More collision avoidance maneuvers (i.e., V) will be needed
 - "Now, once every couple of weeks we do a maneuver" S. Smith, Iridium EVP, December 2010
 - A total of 126 COLA maneuvers were conducted by satellite owners in 2010
 - More debris impact shields (*i.e.*, mass) will be needed to meet the same requirement for probability of no penetration (PNP)
 - The risks for potential critical failure will increase
 - Number of impacts by 0.5 cm debris (with an average impact speed of 10 km/sec) to all operational satellites in LEO is about 1 to 2 per year in the current environment